Enhancing Seizure Detection:A Deep Learning Approach With Non-Linear Bilateral Filtering

Enhancing Seizure Detection:A Deep Learning Approach With Non-Linear Bilateral Filtering

Author Details

1. Ashish Sharma, Motherhood University, Roorkee, Haridwar, Uttarakhand, India
2. Vinai K Singh, Motherhood University, Roorkee, Haridwar, Uttarakhand, India

Seizure detection is an essential component of patient care in the management of epilepsy. This paper introduces a novel method for improving seizure detection using a deep learning model and integrating non-linear bilateral filtering. Deep learning has demonstrated significant potential in examining intricate medical data, and in this study, it is utilised to examine electroencephalogram (EEG) signals to identify seizures. Integrating non-linear bilateral filtering enhances the initial processing of EEG data, resulting in improved accuracy in extracting features and classifying the data. The results indicate the possibility of substantial progress in seizure detection, providing more precise and dependable early detection and intervention techniques in treating epilepsy.

Keywords

Deep learning CNN model, electroencephalogram (EEG), epilepsy, seizure detection, binary classification.
  1. Dissanayake, T. Fernando, S. Denman, S. Sridharan, and C. Fookes, ―Deep Learning for Patient-Independent Epileptic Seizure Prediction Using Scalp EEG Signals, ‖IEEE Sens J, vol. 21, no. 7, pp. 9377–9388, Apr. 2021, doi: 10.1109/JSEN.2021.3057076.
  2. Natu, M. Bachute, S. Gite, K. Kotecha, and A. Vidyarthi, ―Review on Epileptic Seizure Prediction:
  3. Machine Learning and Deep Learning Approaches,‖ Computational and Mathematical Methods in Medicine, vol. 2022. Hindawi Limited, 2022. doi: 10.1155/2022/7751263
  4. Zeng, L. Shan, B. Su, and S. Du, ―Epileptic seizure detection with deep EEG features by convolutional neural network and shallow classifiers,‖ Front Neurosci, vol. 17, May 2023, doi: 10.3389/fnins.2023.1145526
  5. Fingelkurts and A. A. Fingelkurts, ―Quantitative Electroencephalogram (qEEG) as a Natural and Non-Invasive Window into Living Brain and Mind in the Functional Continuum of Healthy and Pathological Conditions,‖ Applied Sciences, vol. 12, no. 19, p. 9560, Sep. 2022, doi: 10.3390/app12199560.
  6. Rekha Sahu, Satya Ranjan Dash, Lleuvelyn A Cacha, Roman R Poznanski, and Shantipriya Parida, ―Epileptic seizure detection: a comparative study between deep and traditional machine learning techniques,‖ J IntegrNeurosci, vol. 19, no. 1, p. 1, Mar. 2020, doi: 10.31083/j.jin.2020.01.24.
  7. L. Martini et al., ―Deep anomaly detection of seizures with paired stereoelectroencephalography and video recordings,‖ Sci Rep, vol. 11, no. 1, Dec. 2021, doi: 10.1038/s41598-021-86891-y.
  8. Zhou et al., ―Epileptic seizure detection based on EEG signals and CNN,‖ Front Neuroinform, vol. 12, Dec. 2018, doi: 10.3389/fninf.2018.00095.
  9. Najafi, R. Jaafar, R. Remli, and W. A. Wan Zaidi, ―A Classification Model of EEG Signals Based on RNN-LSTM for Diagnosing Focal and Generalized Epilepsy,‖ Sensors, vol. 22, no. 19, Oct. 2022, doi: 10.3390/s22197269.
  10. Huang, J. Xu, L. Kang, and T. Zhang, ―Identifying Epilepsy Based on Deep Learning Using DKI Images,‖ Front Hum Neurosci, vol. 14, Nov. 2020, doi: 10.3389/fnhum.2020.590815.
  11. Chen et al., ―An automated detection of epileptic seizures EEG using CNN classifier based on feature fusion with high accuracy,‖ BMC Med Inform Decis Mak, vol. 23, no. 1, p. 96, May 2023, doi: 10.1186/s12911-023-02180-w.
  12. Liu, Y. Lin, Z. Jia, Y. Ma, and J. Wang, ―Representation based on ordinal patterns for seizure detection in EEG signals,‖ Comput Biol Med, vol. 126, p. 104033, Nov. 2020, doi: 10.1016/j.compbiomed.2020.104033.
  13. Yuan et al., ―Epileptic seizure detection based on imbalanced classification and wavelet packet transform,‖ Seizure, vol. 50, pp. 99–108, Aug. 2017, doi: 10.1016/j.seizure.2017.05.018.
  14. Ein Shoka, M. M. Dessouky, A. El-Sayed, and E. E.-D. Hemdan, ―EEG seizure detection: concepts, techniques, challenges, and future trends,‖ Multimed Tools Appl, Apr. 2023, doi: 10.1007/s11042-023-15052-2.
  15. G. Andrzejak, K. Schindler, and C. Rummel, ―Nonrandomness, nonlinear dependence, and nonstationarity of electroencephalographic recordings from epilepsy patients,‖ Phys Rev E, vol. 86, no. 4, p. 046206, Oct. 2012, doi: 10.1103/PhysRevE.86.046206.

Sharma, et.al (2003);Enhancing Seizure Detection: A Deep Learning Approach with Non-Linear Bilateral Filtering,IPEM JOURNAL OF COMPUTER APPLICATION & RESEARCH, 8(1), 43-47

X